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Luenberger observer

(1)


ẋ(t) = Ax(t) +Bu(t),
x(0) = x0 unknown,
y(t) = Cx(t).

(2)


˙̂x(t) = Ax̂(t) +Bu(t)

+ L [y(t)− ŷ(t)] ,
x̂(0) = x̂0,

ŷ(t) = Cx̂(t).

t

x0

x̂0

Is there a convenient way to choose the observer gain L ?
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Luenberger observer

Note that

(2)⇐⇒
{ ˙̂x(t) = (A− LC)x̂(t) + (Bu(t) + Ly(t)),
x̂(0) = x̂0.

and then x(t)− x̂(t) = e(A−LC)t (x(0)− x̂(0))

Theorem I Identity observer Theorem [Luenberger]

Given a completely observable system (1), an identity observer of the form
(2) can be constructed, and the coefficients of the characteristic polynomial
of the observer can be selected arbitrarily.
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Luenberger observer

Note that

(2)⇐⇒
{ ˙̂x(t) = (A− LC)x̂(t) + (Bu(t) + Ly(t)),
x̂(0) = x̂0.

and then x(t)− x̂(t) = e(A−LC)t (x(0)− x̂(0))

Proposition 1.1

We assume System (1) is observable and the eigenvalues of A − LC are
negative and simple. Then, we have∥∥e(A−LC)t∥∥ ≤ γ e−µt

with µ := min
ν∈σ(A−LC) |ν| and γ := cond(V ) =

∥∥V −1
∥∥ ‖V ‖, where V is the

matrix whose rows are the eigenvectors of A − LC and ‖·‖ represents the
induced 2-norm of a matrix.
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Diamond strategy

t

x0

x̂0

T

t`n T−
`

Luenberger observer Time-parallel method
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Diamond strategy

t

x0

x̂0

T

t`n T−
`

I Divide the time interval into windows W` of a given length T > 0.

I Solve Equation (2) on each window, in a sequential order, using a
time-parallel algorithm.
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Diamond strategy
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x̂0
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I Divide the time interval into windows W` of a given length T > 0.
I Solve Equation (2) on each window, in a sequential order, using a

time-parallel algorithm.
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Diamond strategy (time-parallelization)

t

x0

x̂0

T

∆T

t`n T−
`

I Decompose W` into N subintervals of length ∆T .

I Parallelizing in time requires the introduction of initial conditions X̂h
`,n.

I We then construct a parallel version x̂‖(t) of Equation (2) in each subinterval.
I Imposing initial conditions induces discontinuities (jumps) at t`n:

Jh`,n := X̂h
`,n − x̂‖(t`n

−).

Next step : define a suitable stopping criterion !
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Diamond strategy (stopping criterion)

t

x0

x̂0

T

t`n

T−
`

Lemma

Under the assumptions of Proposition 1.1, we have

∥∥(x− x̂‖)(T`−)
∥∥ ≤ γ(‖x0 − x̂0‖+

∑̀
i=1

e−µ(i−1)T · γ
N−1∑
n=1

eµnT
∥∥Jhi,n∥∥) e−µ`T

5



Diamond strategy (stopping criterion)

Proposition 2.1 I A posteriori estimate

Let us assume that h is obtained from the stopping criterion in W`

2γ
N−1∑
n=1

eµn∆T ∥∥Jh`,n∥∥ ≤ γ̃ e−µ(`−1)T

2`−1

where γ̃ is an arbitrary parameter. Then, the rate of convergence of x̂‖(t)
to x(t) is bounded by µ, i.e.∥∥(x− x̂‖)(T`−)

∥∥ ≤ γ (‖x(0)− x̂(0)‖+ γ̃) e−µ`T .
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Parareal algorithm

0 2 4 6 8 10 12 14 16 18 20
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1

Dahlquist equation u̇(t) = − i
2u in [0, 20]

To solve the problem {
u̇(t) = f(u(t)), t ∈ [0, T ]
u(0) = u0

we decompose the time interval on N subintervals, denoted by (tn−1, tn).
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Parareal algorithm

0 2 4 6 8 10 12 14 16 18 20

t
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I Impose arbitrary values on the subintervals by using the coarse solver G:
U0

0 = u0, U
0
n = G(tn, tn−1, U

0
n−1).

I Using the fine solver F , solve in parallel{
u̇(t) = f(u(t)), t ∈ [tn−1, tn]

u(tn−1) = U0
n−1.

I Smooth the discontinuities previously introduced by defining
U1
n := F(tn, tn−1, U

0
n−1) + G(tn, tn−1, U

1
n−1)− G(tn, tn−1, U

0
n−1).

7



Parareal algorithm

0 2 4 6 8 10 12 14 16 18 20

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

I Impose arbitrary values on the subintervals by using the coarse solver G:
U0

0 = u0, U
0
n = G(tn, tn−1, U

0
n−1).

I Using the fine solver F , solve in parallel{
u̇(t) = f(u(t)), t ∈ [tn−1, tn]

u(tn−1) = U0
n−1.

I Smooth the discontinuities previously introduced by defining
U1
n := F(tn, tn−1, U

0
n−1) + G(tn, tn−1, U

1
n−1)− G(tn, tn−1, U

0
n−1).

7



Parareal algorithm

0 2 4 6 8 10 12 14 16 18 20

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

I Impose arbitrary values on the subintervals by using the coarse solver G:
U0

0 = u0, U
0
n = G(tn, tn−1, U

0
n−1).

I Using the fine solver F , solve in parallel{
u̇(t) = f(u(t)), t ∈ [tn−1, tn]

u(tn−1) = U0
n−1.

I Smooth the discontinuities previously introduced by defining
U1
n := F(tn, tn−1, U

0
n−1) + G(tn, tn−1, U

1
n−1)− G(tn, tn−1, U

0
n−1).

7



Parareal algorithm
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At iteration k:
I compute {F(tn, tn−1, U

k−1
n−1)}Nn=1 in parallel.

I Update the sequence

Ukn := F(tn, tn−1, U
k−1
n−1) + G(tn, tn−1, U

k
n−1)− G(tn, tn−1, U

k−1
n−1)

by computing {G(tn, tn−1, U
k
n−1)}Nn=1 sequentially.

What about its convergence ?
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Theorem I Convergence of Parareal [Gander and Hairer]

(...) at iteration k of the Parareal algorithm, we have the bound

∥∥u(tn)− Ukn
∥∥ ≤ C3

C1

(C1∆T p+1)k+1

k! (1 + C2∆T )n−(k+1)
k∏
j=0

(n− j).

I Superlinear rate of convergence.
I Among other assumptions, F(tn, tn−1, U

k
n−1) is the exact solution on

(tn−1, tn), and G must satisfy

‖G(t+ ∆T, t, x)− G(t+ ∆T, t, y)‖ ≤ (1 + C2∆T ) ‖x− y‖ .

I The result is well suited for non-decaying problems.
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Theorem I Convergence of Parareal [Gander and Hairer]

(...) at iteration k of the Parareal algorithm, we have the bound

∥∥u(tn)− Ukn
∥∥ ≤ C3

C1

(C1∆T p+1)k+1

k! (1 + C2∆T )n−(k+1)
k∏
j=0

(n− j).

Theorem 3.1 I Convergence of Parareal for decaying problems

(...) We also assume that F and G are Lipschitz with respect to the initial conditions:

max {‖F(tn, tn−1, y)−F(tn, tn−1, z)‖ , ‖G(tn, tn−1, y)− G(tn, tn−1, z)‖} ≤ ε ‖y − z‖ ,

for a constant ε ∈ (0, 1). Then, after k iterations of the Parareal algorithm, we have

∥∥Ukn − u(tn)
∥∥ ≤

0 n ≤ k

Bkn := αβk
n−k−1∑
i=0

(
k+i
k

)
εi n > k.
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Diamond strategy (Parareal case)

t

x0

x̂0

T

t`n

T−
`

I The Luenberger observer x̂(t) is a decaying problem (Proposition 1.1).

I The number of parareal iterations {k`}` can be determined from

(a) Proposition 2.1 (a posteriori estimate)

2γ
N−1∑
n=1

eµn∆T
∥∥X̂k`

`,n
− x̂‖(t`n)

∥∥ ≤ γ̃ e−µ(`−1)T

2`−1 , γ̃ arbitrary.

(b) Theorem 1.3 (a priori bound)∥∥X̂k`
`,n
− x̂‖(t`n)

∥∥ ≤ Bkn(α, β, ε)
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Diamond strategy (Parareal case)

Theorem 4.1

We keep the assumptions of Proposition 1.1 and Theorem 1.3. For a window W` and
γ̃ > 0, we define

k` =
{

minS` S` 6= ∅
k`−1 S` = ∅

where

S` =

{
k ∈ N∗, k ≤ N − 1 : 2γ

N−1∑
n=1

eµn∆TBkn(α, β, ε) ≤ γ̃ e−µ(`−1)T

2`−1

}
.

Suppose that we apply the Diamond strategy using k` iterations of the Parareal algorithm.
Then, the stopping criterion is satisfied.
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A textbook example

Consider the second order system{
z̈ + 2ηωż + ω2z = 5 + e−100t sin( 3

4 t),
z(0), ż(0) unknown,

with ż(t) as output.
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Figure: η = 0.1, ω = 2
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A textbook example

Consider the second order system (in matricial form)
ẋ =

[
0 1
−ω2 −2ηω

]
x+

(
0
1

)
u(t),

x(0) = x0 unknown,

y =
(
0 1

)
x,

with x = (z ż)> and u(t) = 5 + e−100t sin( 3
4 t).
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(a) γ̃ = 10−3
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(b) γ̃ = 1.
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(c) γ̃ = 103.

Figure: Comparison between kth and kobs, for N = 16 and δt = ∆T
25 . The eigenvalues of

A− LC are {−0.25,−0.5} (top) and {−2,−4} (bottom).

12



Complexity analysis (Parareal case)

We define the efficiency of the algorithm as

E = τs
Nτp

where τs, τp are the CPU times required to reach a given tolerance Tol by
using a sequential and parallel solver, respectively; and N represents the
number of available processors.
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Complexity analysis (Parareal case)

Theorem

The efficiency of the Diamond Strategy satisfies

E ≤ `∗τF∆T
τF∆T +NτG∆T

( `∗‖−1∑
`=0

k`

)−1

,

where τF∆T , τG∆T corresponds to the computational time associated to one
solving of (2) on a subinterval of length ∆T , for F and G respectively; and
`∗, `‖ denotes the number of windows required to reach a given tolerance
Tol by using a sequential or parallel solver.
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(a) E(γ̃), for N = 16 and
δt = ∆T

25 .
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(b) E(N), for δt = ∆T
25 and

γ̃ = 210.
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(c) E(δt), for N = 16 and
γ̃ = 210.

Figure: Comparison between Eobs(kobs), Eobs(kth) and Eth0 . The eigenvalues of A− LC
are {−0.25,−0.5} (top) and {−2,−4} (bottom).
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Perspectives

I Extension to nonlinear observers, Kalman filters.
I Use of other time-parallelization algorithms (e.g. ParaExp).
I Aplication to space-time problems.
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Thank you for your attention !
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