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LUENBERGER OBSERVER

z(0) = zo unknown,

z(t) = Az(t) + Bu(t),
(1) {
y(t) = Cx(t).

Zo

AVAVAVAVAV




LUENBERGER OBSERVER

z(0) = zo unknown, .
0

z(t) = Az(t) + Bu(t),
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y(t) = Cx(t).
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LUENBERGER OBSERVER

z(t) = Az(t) + Bu(t),
(1) < z(0) = o unknown, 2o W
y(t) = Cx(t).

2(t) = AZ(t) + Bu(t)
+ Ly(t) —9(t)],

Is there a convenient way to choose the observer gain L 7




LUENBERGER OBSERVER

Note that

£(t) = (A — LC)2(t) + (Bu(t) + Ly(t)),

@ = {@(0) = %o.

and then z(t) — 2(t) = e~ ED (2(0) — 2(0))




LUENBERGER OBSERVER

Note that

THEOREM » IDENTITY OBSERVER THEOREM [LUENBERGER]

Given a completely observable system (1), an identity observer of the form
(2) can be constructed, and the coefficients of the characteristic polynomial
of the observer can be selected arbitrarily.




LUENBERGER OBSERVER

Note that
2(t) =
£(0)

—~

A — LC)2(t) + (Bu(t) + Ly(t)),

0-

(2)<:>{

Il
2>

and then z(t) — &(t) = e~ FD* (2(0) — £(0))

PrRoOPOSITION 1.1

We assume System (1) is observable and the eigenvalues of A — LC' are
negative and simple. Then, we have

||e(A—LC)t| ut

| <vye”
with p = _min, |v| and 7 := cond(V) = ”V_1H [V, where V is the
matrix whose rows are the eigenvectors of A — LC' and ||-|| represents the
induced 2-norm of a matrix.
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DIAMOND STRATEGY
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Luenberger observer ] ‘ Time-parallel method }




DIAMOND STRATEGY
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» Divide the time interval into windows W, of a given length T" > 0.



DIAMOND STRATEGY
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» Divide the time interval into windows W, of a given length T" > 0.

» Solve Equation (2) on each window, in a sequential order, using a
time-parallel algorithm.



DIAMOND STRATEGY (TIME-PARALLELIZATION)

N W

» Decompose Wy into N subintervals of length AT



DIAMOND STRATEGY (TIME-PARALLELIZATION)

AN

» Parallelizing in time requires the introduction of initial conditions XZLn



DIAMOND STRATEGY (TIME-PARALLELIZATION)

2l N N N

» Parallelizing in time requires the introduction of initial conditions )A(Zf;n.
» We then construct a parallel version & (t) of Equation (2) in each subinterval.



DIAMOND STRATEGY (TIME-PARALLELIZATION)

np TN N N

» Parallelizing in time requires the introduction of initial conditions XZn.
» We then construct a parallel version & (t) of Equation (2) in each subinterval.
» Imposing initial conditions induces discontinuities (jumps) at t4:

J;ﬁn = X;,ﬁ — JA’H(Tfli)



DIAMOND STRATEGY (TIME-PARALLELIZATION)

T N N

» Parallelizing in time requires the introduction of initial conditions XZn.
» We then construct a parallel version & (t) of Equation (2) in each subinterval.
» Imposing initial conditions induces discontinuities (jumps) at t4:

h -h A L=
Jl,n = X(.‘,n - TH(Tn )

Next step : define a suitable stopping criterion !




DIAMOND STRATEGY (STOPPING CRITERION)
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Under the assumptions of Proposition 1.1, we have

£ N—-1
|z = &) (@) <v <||.’L'o — &ol| + Ze—u@—l)T oy Z e | Jh”) o hT
=1 n=1




DIAMOND STRATEGY (STOPPING CRITERION)

PROPOSITION 2.1 » A POSTERIORI ESTIMATE

Let us assume that & is obtained from the stopping criterion in W,
e m(=1T

272 R N e

where 7 is an arbitrary parameter. Then, the rate of convergence of &) (¢)
to z(t) is bounded by u, i.e.

[[(@ = &) (T2 )| <7 (le(0) = &(0)]| +7) e




PARAREAL ALGORITHM

Dahlquist equation u(t) = —%u in [0, 20]

To solve the problem
{u(t) = f(u(t)), tel0,T]
u(0) = uo

we decompose the time interval on N subintervals, denoted by (tn—1,txs).



PARAREAL ALGORITHM

» Impose arbitrary values on the subintervals by using the coarse solver G:

Ug = uo, U = Gltn,tn_1,US_1).



PARAREAL ALGORITHM

» Impose arbitrary values on the subintervals by using the coarse solver G:
Us = o, Up = G(tn, tn-1,Un_1).
» Using the fine solver F, solve in parallel
u(t) = f(u(t), tE€ [tn1,tn]
{u(tnl) =U)_,.



PARAREAL ALGORITHM

» Impose arbitrary values on the subintervals by using the coarse solver G:
Ug = w0, Uy = G(tn, tu—1,Up_1).
» Using the fine solver F, solve in parallel
u(t) = f(u(t), tE€ [tn1,tn]
{u(tnl) =U)_,.
» Smooth the discontinuities previously introduced by defining

Urlz = -F(tm tn—1, U,?,l) + g(tnytn—h Ur%,fl) - g(tmtn*lv Ur(zfl)-



PARAREAL ALGORITHM

At iteration k:
> compute {F(tn,tn—1, U "1)}A_; in parallel.
» Update the sequence
U,,I: = ]:(t'r“tnth )+g( n 17U1{L€71) _g(tn n— l>U )

by computing {G(tn, tn—1,UF_1)}2_, sequentially.



PARAREAL ALGORITHM

= o )

sue

At iteration k:
» compute {_7-'(tn,tn_1,U’c DI, in parallel.
» Update the sequence
Uk i= Fltntn-1,UF"1) 4 Gltn, ta—1, US 1) — G(tn, tn—1, UF"1)

by computing {G(tn,tn—1,UF_1)}A_ sequentially.

What about its convergence ?




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

k
(1+Car)" D T -

j=0

03 (clATIf’“)k+1

Hu(t Uk” < = o




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

03 (clATIf’“)k+1

Hu(t Uk” < = o

k
(14 CAT)"™ (k+1) Hn—j .
=0

» Superlinear rate of convergence.




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

k
(1+Car)" D T -

j=0

03 (clATP“)k+1

Hu(t Uk” < = o

» Superlinear rate of convergence.

» Among other assumptions, F(tn,tn—1,UF_,) is the exact solution on
(tn—1,tn), and G must satisfy

IG(t+ AT, t,x) — G(t + AT, t,y)|| < (1 + C2AT) ||z — | .




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

k
(1+Car)" D T -

j=0

03 (clATP“)k+1

Hu(t Uk” < = o

» Superlinear rate of convergence.

» Among other assumptions, F(tn,tn—1,UF_,) is the exact solution on
(tn—1,tn), and G must satisfy

IG(t+ AT, t,x) — G(t + AT, t,y)|| < (1 + C2AT) ||z — gy -

» The result is well suited for non-decaying problems.




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

5 (ClATp+l)k+1

k
|u(tn) — Ux|| < % . (1+ Car)" * D T = ).

=0

THEOREM 3.1 » CONVERGENCE OF PARAREAL FOR DECAYING PROBLEMS

(-..) We also assume that F and G are Lipschitz with respect to the initial conditions:
max {H]:(tnvtn—lv y) - ]:(tnytn—l’ Z)” ) ”g(tnvtn—lv y) - g(tnv tn—1, Z)”} <e ”y - Z” )
for a constant € € (0,1). Then, after k iterations of the Parareal algorithm, we have

0 n<k
|UE —utn)|| < b1
Bii=apt 3 () n>k

i=0




DIAMOND STRATEGY (PARAREAL CASE)

TN T N N

» The Luenberger observer Z(t) is a decaying problem (Proposition 1.1).



DIAMOND STRATEGY (PARAREAL CASE)

N R

» The Luenberger observer Z(t) is a decaying problem (Proposition 1.1).
» The number of parareal iterations {k¢}, can be determined from
(a) Proposition 2.1 (a posteriori estimate)

2y Z etnAT ||X/ L=t (t9) H S;e_;(z#, 5 arbitrary.



DIAMOND STRATEGY (PARAREAL CASE)

rlT N N N

» The Luenberger observer Z(t) is a decaying problem (Proposition 1.1).
» The number of parareal iterations {k¢}, can be determined from
(a) Proposition 2.1 (a posteriori estimate)

_e—hk(=1)T )
2y Z etnAT ||X/ L=t (t9) H < T Y arbitrary.
(b) Theorem 1.3 (a priori bound)
| %72, =@y h)]| < BE(a, B,e)




DIAMOND STRATEGY (PARAREAL CASE)

We keep the assumptions of Proposition 1.1 and Theorem 1.3. For a window W, and
5 > 0, we define

{minSg Se# 0
ke =

ke—1 Se=10
where
« - nAT pk e HED
Se = kEN,kSN—l:Z’yZe“ Bn(a’ﬁ’g)g—yyii1 .
n=1

Suppose that we apply the Diamond strategy using k, iterations of the Parareal algorithm.
Then, the stopping criterion is satisfied.




A TEXTBOOK EXAMPLE

Consider the second order system
—100¢

{é+2nwé+w2z—5+e sin(21),

2(0), 2(0) unknown,

with Z(t) as output.



A TEXTBOOK EXAMPLE
Consider the second order system (in matricial form)

. 0 1
=L e

z(0) = o unknown,
y = (0 1) T,

with z = (2 2)7 and u(t) = 5+ e ' sin(3¢).

Juo



A TEXTBOOK EXAMPLE
Consider the second order system (in matricial form)

% ()

z(0) = o unknown,
y = (0 1) T,

with z = (2 2)7 and u(t) = 5+ e ' sin(3¢).

T

—— (1) for {~0.25, 0.
#(t) for {~2,—4}

Figure: n =0.1, w = 2
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(b)y=1. (c) v = 103.

(ayy=10"3

The eigenvalues of

_ AT
=55

Figure: Comparison between kt" and k%S, for N = 16 and 6t
A — LC are {—0.25,—0.5} (top) and {—2, —4} (bottom).
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COMPLEXITY ANALYSIS (PARAREAL CASE)

We define the efficiency of the algorithm as

Ts

- Ny,

where 75, 7, are the CPU times required to reach a given tolerance Tol by
using a sequential and parallel solver, respectively; and N represents the
number of available processors.




COMPLEXITY ANALYSIS (PARAREAL CASE)

THEOREM

The efficiency of the Diamond Strategy satisfies

Z‘*‘—l

Z*T}- -1
< - AT ko ,
Tt NTgT < Z

£=0

where 7%, T, corresponds to the computational time associated to one
solving of (2) on a subinterval of length AT, for F and G respectively; and
£*, £ denotes the number of windows required to reach a given tolerance
Tol by using a sequential or parallel solver.




COMPLEXITY ANALYSIS (PARAREAL CASE)

THEOREM

The efficiency of the Diamond Strategy satisfies

lﬁ—l

-1
EgEéh:€*<Zkg> ,

£=0

where 7%, T, corresponds to the computational time associated to one
solving of (2) on a subinterval of length AT, for F and G respectively; and
£*, £ denotes the number of windows required to reach a given tolerance
Tol by using a sequential or parallel solver.
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Figure: Comparison between E°$(k°bs), b (kth) and Ef". The eigenvalues of A — LC
are {—0.25,—0.5} (top) and {—2, —4} (bottom).



PERSPECTIVES

» Extension to nonlinear observers, Kalman filters.
» Use of other time-parallelization algorithms (e.g. ParaExp).

» Aplication to space-time problems.



Thank you for your attention !
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