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LUENBERGER OBSERVER

2(0) = xo unknown,

z(t) = Az(t) + Bu(t),
(1) {
y(t) = Cx(t).
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LUENBERGER OBSERVER

2(0) = xo unknown,

z(t) = Az(t) + Bu(t),
U){
y(t) = Cx(t).

2(t) = AZ(t) + Bu(t)

+ Lly(®) —9(t)],
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LUENBERGER OBSERVER

z(t) = Az(t) + Bu(t),

Is there a convenient way to choose the observer gain L 7




LUENBERGER OBSERVER

Note that

2) — {;((8 Z ;A — LO)&(t) 4+ (Bu(t) + Ly(t)),

and then z(t) — 2(t) = e~ ED (2(0) — £(0))




LUENBERGER OBSERVER

Note that

THEOREM » IDENTITY OBSERVER THEOREM [LUENBERGER]

Given a completely observable system (1), an identity observer of the form
(2) can be constructed, and the coefficients of the characteristic polynomial
of the observer can be selected arbitrarily.




LUENBERGER OBSERVER

' Note that |
2) — { &(t) = (A — LC)2(t) + (Bu(t) + Ly(t)),
£(0) = fo.

and then z(t) — &(t) = e~ FD* (2(0) — #(0))

PRrRoOPOSITION 1.1

We assume System (1) is observable and the eigenvalues of A — LC' are
negative and simple. Then, we have

(A—Lc)t| wt

4= < em

with p = _min, |y and v := cond(V) = HV_1H IV, where V is the
matrix whose rows are the eigenvectors of A — LC' and ||-|| represents the
induced 2-norm of a matrix.
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DIAMOND STRATEGY

Zo

Luenberger observer ] ‘ Time-parallel method }




DIAMOND STRATEGY

2o T N T N N S

» Divide the time interval into windows W, of a given length T' > 0.



DIAMOND STRATEGY
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» Divide the time interval into windows W, of a given length T' > 0.

» Solve Equation (2) on each window, in a sequential order, using a
time-parallel algorithm.



DIAMOND STRATEGY (TIME-PARALLELIZATION)

N W

» Decompose W, into N subintervals of length AT



DIAMOND STRATEGY (TIME-PARALLELIZATION)

AN

» Parallelizing in time requires the introduction of initial conditions XZLn



DIAMOND STRATEGY (TIME-PARALLELIZATION)

N W

» Parallelizing in time requires the introduction of initial conditions )A(Z?;n.
» We then construct a parallel version Z(t) of Equation (2) in each subinterval.



DIAMOND STRATEGY (TIME-PARALLELIZATION)

np TN N N

» Parallelizing in time requires the introduction of initial conditions XZn.
» We then construct a parallel version 2| (t) of Equation (2) in each subinterval.
» Imposing initial conditions induces discontinuities (jumps) at t5:

J;ﬁn = X;,ﬁ — JA’H(Tfli)



DIAMOND STRATEGY (TIME-PARALLELIZATION)

T N N

» Parallelizing in time requires the introduction of initial conditions XZn.
» We then construct a parallel version 2| (t) of Equation (2) in each subinterval.
» Imposing initial conditions induces discontinuities (jumps) at t5:

h -h A L=
Jl,n = X(.‘,n - TH(Tn )

Next step : define a suitable stopping criterion !




DIAMOND STRATEGY (STOPPING CRITERION)
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Under the assumptions of Proposition 1.1, we have

@ = e )| < v a(0) - 21+ e[| ).




DIAMOND STRATEGY (STOPPING CRITERION)

PROPOSITION 1.2 » A POSTERIORI ESTIMATE

Let us assume that & is obtained from the stopping criterion in W,

h ~ T
max ||Jg n” <~ve ¥
1<n<N ’

where 7 is an arbitrary parameter. Then, the rate of convergence of &) (¢)
to z(t) is bounded by u, i.e.

@ =@ <2072 (lato) — 200} + 3y e




PARAREAL ALGORITHM

Dahlquist equation u(t) = —%u in [0, 20]

To solve the problem
{ ut) = f(u(t), te€l0,T]
u(0) = wuo

we decompose the time interval on N subintervals, denoted by (tn—1,txs).

~



PARAREAL ALGORITHM

» Impose arbitrary values on the subintervals by using the coarse

solver G:

Ug = uo, U = Gltn,tn_1,US_1).



PARAREAL ALGORITHM

» Impose arbitrary values on the subintervals by using the coarse solver G:
Us = o, Up = G(tn, tn-1,Un_1).
» Using the fine solver F, solve in parallel
at) = f(ut), t€[tn-1,tn]
{u(tnl) =U_,.



PARAREAL ALGORITHM

» Impose arbitrary values on the subintervals by using the coarse solver G:
Ug = w0, Uy = G(tn, tu—1,Up_1).
» Using the fine solver F, solve in parallel
at) = f(ut), t€ [tn-1,tn]
{u(tnl) =U_,.
» Smooth the discontinuities previously introduced by defining

Urlz = -F(tm tn—1, U,?,l) + g(tnytn—h Ur%,fl) - g(tmtn*lv Ur(zfl)-



PARAREAL ALGORITHM

At iteration k:

» compute {F(tn,tn_1,UF 1)}, in parallel.
» Update the sequence
U,,I: = ]:(t'r“tnth )+g( n 17U1{L€71) _g(tn n— l>U )

by computing {G(tn, tn—1,UF_1)}3_, sequentially.

~



PARAREAL ALGORITHM

= o )

sue

At iteration k:
» compute {_7-'(tn,tn_1,U’c DI, in parallel.
» Update the sequence

Uk i= Fltntn-1,UF"1) 4 Gltn, ta—1, US 1) — G(tn, tn—1, UF"})
by computing {G(tn, tn—1,UF_1)}A_, sequentially.

What about its convergence ?

~



THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

k
(1+Car)" D T -

j=0

03 (clATIf’“)k+1

Hu(t Uk” < = o




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

03 (clATIf’“)k+1

Hu(t Uk” < = o

k
(14 CAT)"™ (k+1) Hn—j .
=0

» Superlinear rate of convergence.




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

k
(1+Car)" D T -

j=0

03 (clATP“)k+1

Hu(t Uk” < = o

» Superlinear rate of convergence.

» Among other assumptions, F(tn,tn—1,UF_1) is the exact solution on
(tn—1,tn), and G must satisfy

IG(t+ AT, t,x) — G(t + AT, t,y)|| < (1 + C2AT) ||z — | .




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

k
(1+Car)" D T -

j=0

03 (clATP“)k+1

Hu(t Uk” < = o

» Superlinear rate of convergence.

» Among other assumptions, F(tn,tn—1,UF_1) is the exact solution on
(tn—1,tn), and G must satisfy

IG(t+ AT, t,x) — G(t + AT, t,y)|| < (1 + C2AT) ||z — gy -

» The result is well suited for non-decaying problems.




THEOREM » CONVERGENCE OF PARAREAL [GANDER AND HAIRER]

(...) at iteration k of the Parareal algorithm, we have the bound

5 (ClATp+l)k+1

k
|u(tn) — Ux|| < % . (1+ Car)" * D T = ).

=0

THEOREM 1.3 » CONVERGENCE OF PARAREAL FOR DECAYING PROBLEMS [KWOK,

RIFFO AND SALOMON]

(...) We also assume that F and G are Lipschitz with respect to the initial conditions:
maX{H}-(tnytn—lvy) - ]:(tmtn—h Z)H ) ||g(t"7t"—17y) - g(tnvt"—lvz)”} <e ”y - z” ’
for a constant € € (0,1). Then, after k iterations of the Parareal algorithm, we have

0 n<k
HUﬁ - u(t")” < ap* n7§51 (kz’i)si n > k.

i=0




DIAMOND STRATEGY (PARAREAL CASE)

» The Luenberger observer &(t) is a decaying problem (Proposition 1.1).



DIAMOND STRATEGY (PARAREAL CASE)

20 /”7\ o //k'\ o //ﬁ; \ o //”7“
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» The Luenberger observer &(t) is a decaying problem (Proposition 1.1).
» The number of parareal iterations {k¢}¢ can be determined from
(a) Proposition 1.2 (a posteriori estimate)

Sk gl ~ T~ o
1252(N HX[*N - ”’H(tn)H < ~ve M 5 arbitrary.



DIAMOND STRATEGY (PARAREAL CASE)

20 /”7\ o //k'\ o //ﬁ; \ o //”7“

L | | |
o | | |

;
£
124

» The Luenberger observer &(t) is a decaying problem (Proposition 1.1).
» The number of parareal iterations {k¢}¢ can be determined from
(a) Proposition 1.2 (a posteriori estimate)

Sk gl ~ T~ o
1252(N HX[*N - ”’H(tn)H < ~ve M 5 arbitrary.

(b) Theorem 1.3 (a priori bound)

n—kyp—1

| < ap™ Z (*H)e', n> ke

=0

>k A 4
Xt — x| (tn)

l,n




DIAMOND STRATEGY (PARAREAL CASE)

We keep the assumptions of Proposition 1.1 and Theorem 1.3. For a window W, and
5 > 0, we define

fr — minS, Se#0
‘ ke—1 Se=0

where
N—k—1 1
—_ * . k k+i\ _i -~ —plT — &
Sg{k€N7k<N1.oe,8 Z; (")’ <Fe " a(l—aN)}

Suppose that we apply the Diamond strategy using k. iterations of the Parareal algorithm.
Then, the stopping criterion is satisfied.




COMPLEXITY ANALYSIS (PARAREAL CASE)

We define the efficiency of the algorithm as

Ts

- N1,

where 75, 7, are the CPU times required to reach a given tolerance Tol by
using a sequential and parallel solver, respectively; and N represents the
number of available processors.




COMPLEXITY ANALYSIS (PARAREAL CASE)

We define the efficiency of the algorithm as

Ts

- N1,

where 75, 7, are the CPU times required to reach a given tolerance Tol by
using a sequential and parallel solver, respectively; and N represents the
number of available processors.

The estimated efficiency of the Diamond Strategy is given by

£*—1 -1

7L
Eth _ AT k@ ,
TAT + NTAT Z

where 747, 7%, represents the amount of time spent in solving (2) over an
interval of size AT with F and G, respectively, and

£* := min {Z eN: (7(1 +e ATy pye AT 12(0) — 50(0)||) e T < Tol} .




COMPLEXITY ANALYSIS (PARAREAL CASE)

We define the efficiency of the algorithm as

Ts

- N1,

where 75, 7, are the CPU times required to reach a given tolerance Tol by
using a sequential and parallel solver, respectively; and N represents the
number of available processors.

The estimated efficiency of the Diamond Strategy is given by

1 - 1 -t
Bth — TAT ko E(t)h — ke 7
mXr + N7Zp Z ;

where 747, 7%, represents the amount of time spent in solving (2) over an
interval of size AT with F and G, respectively, and

£* := min {Z eN: (7(1 +e ATy pye AT 12(0) — 50(0)||) e T < Tol} .
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Figure: Comparison between k" and k%%, for N = 16 and 6t = % The eigenvalues of

A — LC are {—0.8,—1} (top) and {—0.2,—0.25} (bottom).
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PERSPECTIVES

» Use of other time-parallelization algorithms (e.g. ParaExp).
» Extension to a stochastic framework (continuous Kalman filter).

» Considering a variable window approach.
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DERIVATION OF THE WAVE MODEL

Z A Free surface

Bathymetry

> O ={(z,2) e AXR| —zp(x) < z<n(z,t)}, t>0.



DERIVATION OF THE WAVE MODEL

Z A

d

Free surface

Bathymetry

> Q= {(‘zvz) € XR' 721)('7:) <z Sﬂ(ﬂ%t)},

» Asymptotic derivation:

L

t> 0.




FroM NS SYSTEM TO SV EQUATIONS

aa—ltl+(u~V)u:div(UT)+g in 4,
(3) div (u) = 0 in O,

u=1ug in Qq.

v

Incompressible fluid,

v

u = (u,w) " denotes its velocity,

v

or =—pl+pu (Vu + VuT) is the total stress tensor, p denotes the pressure,

» gravity g = (0, —g) ", atmospheric pressure po, viscosity x and density are
constants.



FroM NS SYSTEM TO SV EQUATIONS

(3)

Change of variables

aa—l:+(u~V)u:div(aT)+g in 4,
div(u) =0 in Q,
u = ug in QU.

and

’ M

/
b ==5P =

CoL

b
gH

)

A R RV
5Cy’ 5cCo’ T T AT
where Cy = /gH. The dimensionless coefficients are given by

Pa
gH’

/o
y Pa =

16



DEPTH-AVERAGED MASS EQUATION

Due to the Leibnitz integral rule and the boundary conditions, integrating the mass
equation gives

on .
ou  Ow
/ (52 + 35 ) 2= =0

9 Mudz — du(z, 0 t)@—u(x —Z t)%—kw(:cé t) —w(z,—2p,t) =0
8x u ) 777 8:1; ) b? 8:E ) 7]7 ) Zb7 -



DEPTH-AVERAGED MASS EQUATION

Due to the Leibnitz integral rule and the boundary conditions, integrating the mass
equation gives

on
ou Ow
/ (52 + 3 ) =0

9 Mudz — du(z, 0 t)@—u(x —Z t)%—kw(:cé t) —w(z,—2p,t) =0
8x u ) 777 8:1; ) b? 8:E ) 7]7 ) Zb7 -

W B | 2| On |
@ 5u8m +w= 5 1+ (e6) . on (z,dn(x,t),t),
Oz;,
u—— +w =0 on (z, —zp(x),t).

ox




DEPTH-AVERAGED MASS EQUATION

Due to the Leibnitz integral rule and the boundary conditions, integrating the mass
equation gives

on
ou  Ow
/_ (@ + 5) dz=0

2b

9 5nd — Su(a,om, )20 — ua, -2, )2 4w, o, ) — wla, —2,) = 0
oz ~ uaz ulzx, on, ox u\x, —zv, o wizx, on, WAL, —Zb, -

A(hsu) @
or ot

87727
a?‘ =0

1+ (e9)?

We denote the depth-averaged velocity by

1 on
T @ D) /_ u(zx, z,t)dz,

Zb

u(z,t) =

where hs = 01 + 2p.




HYDROSTATIC PRESSURE

The Momentum Equation (in w) yields

5 (G +o(ugy +gs)) =
) ”(E” Yor TYo2)) =

Op

0

_7_1_’_57

0z

ox

P
+25@(

((

ow

“az

o,
0z

).

20w

ox

)



HYDROSTATIC PRESSURE

[ We assume a small viscosity coefficient ;1 = p. ’

The Momentum Equation (in w) yields

4) 525(8—”+5(u3—w+waﬂ))— op

ot ox 0z 0z ox 0z

0 ow

_———1—&—63 (auo(a—u—i—a

2 0u

ox

)



HYDROSTATIC PRESSURE

[ We assume a small viscosity coefficient ;1 = p. ’

The Momentum Equation (in w) yields

5. [Ow ow ow __ap_ ﬂ( (@ 2@))
@ <o5(G +o(ugy tugr)) =g - 1+og (m(gs +<' 5

0 ow

After rearranging terms of order €2 and integrating in z, we get
ou ow Ou

_ 2 _ il et
p(z,z,t) = O(€"d) + (on — z) + edpo (836 +2 9 92 (z, on, t))

0
+p(, 80, 1) — 220105 (01, 1)



HYDROSTATIC PRESSURE

[ We assume a small viscosity coefficient ;1 = p. ’

The Momentum Equation (in w) yields

25 (Ow Ow  Ow\\_ Op _ ﬂ( (‘1“ 2@”))
(4) 55(&”(“%*“’&))‘ 5: 105 BrolG; T G

0 ow

After rearranging terms of order €2 and integrating in z, we get
ou ow Ou

_ 2 _ it it
p(z,z,t) = O(€"d) + (6n — z) + €dpo (83& +2 9 92 (z, on, t))

0
+p(, 6n.1) — 22005 (., 51, 1)

PatO((e6)?)

(stress boundary conditions)



HYDROSTATIC PRESSURE

[ We assume a small viscosity coefficient ;1 = p. ’

The Momentum Equation (in w) yields

25 (Ow Ow  Ow\\_ Op _ ﬂ( (‘1“ 2@”))
(4) 55(&”(“%*“’&))‘ 5: 105 BrolG; T G

0 ow

After rearranging terms of order €2 and integrating in z, we get
ou ow Ou

_ 2 _ it it
p(z,z,t) = O(€"d) + (6n — z) + €dpo (83& +2 9 92 (z, on, t))

0
+p(, 6n.1) — 22005 (., 51, 1)

PatO((e6)?)

(stress boundary conditions)

= (6n — 2z) + pa + O(e9).



DEPTH-AVERAGED MOMENTUM EQUATION

The Momentum Equation (in u) yields

ot ox 0z 6 Ox ox 0z

@_F(S(aiu_t'_ @)—_1@4_2&(8 @)-I—E(E (i@_ﬁri
b v - Ho e Ho\22a: " ox

ow

)



DEPTH-AVERAGED MOMENTUM EQUATION

The Momentum Equation (in u) yields

ot ox Oz 0 Ox ox 0z €2 0z

Since div (u) = 0, integrating its left-hand side gives

B () PRy o TP R T
a ot ox 0z B a ot —a oz 0z

ou ou ou 10p 0 ou 1o} 1 Ou
Bl ) Lo () £ (s

&)

)és



DEPTH-AVERAGED MOMENTUM EQUATION
The Momentum Equation (in u) yields

@_&.5(87“4'_ @)—_1@4_2&(8 @)"FQ(E (i@_ﬁ.@))
ot Yor TYoz) T Tsor oz \Maz) T o "M\ a: T ar /)

Since div (u) = 0, integrating its left-hand side gives

&n on on 2
ou ou ou ou ou Juw
/zb (5t + 0 (5 5| dz_/% 8tdz+6/Zb (aﬁ RE )dz

_ O(hsu) (hsu?)
T ot +o oz
on N
+6u(az,6n,t)at< 14 (€d) I 1].




DEPTH-AVERAGED MOMENTUM EQUATION
The Momentum Equation (in u) yields

ou ou ou\  10p 1o} ou 9] 1 0u Ow
a0 (v rogr) = 5o g (mgy) o (oS 5E +50))

Since div (u) = 0, integrating its left-hand side gives

on on on 2
ou Ju Ju ou ou Juw
/zb (5 9 (55 5] dz—/zb ad“‘;/zb <% "o >dz

. A(hs) 6(h5ﬂ2) 2
=~ +46 Ep + O(e70)
on > @‘2 _
+ du(zx, on,t) e ( 1+ (e9) B 1]).

PROPOSITION

The hydrostatic pressure, combined with the stress boundary conditions,
implies that u(z, z,t) = @(z,t) + O(g). In particular, we have the approxi-
mation

h&? = h5ﬂ2 + 0(62).




DEPTH-AVERAGED MOMENTUM EQUATION

To treat the right-hand side, we use the hydrostatic pressure

on
1o 0 (0uy, 0 (Bw\\ oD (0u
/_Zb{ 581‘+EM0 (28m (6‘x>+8z (8m>)+ € 0z (Qz)}d'z
= fh(s% +O(e) + {%%

0
oz (:L',(;T],t)* @j(:mfzht)] :

e 0z



DEPTH-AVERAGED MOMENTUM EQUATION

To treat the right-hand side, we use the hydrostatic pressure

on
1oy 0 (0u) 0 (Bw\), w0 (0u
/_Zb{ 58x+€u0 (28m (6‘x>+82 (8m>)+ € 0z (Qz)}d'z

on o Ou Lo Ou }
= —hs—t B0 om,t) — 2222w, —2, ) |
681‘ +(9(6)4> |: c az(m7 7, ) e 8Z(x’ Zb, )
In summary, we have
B(hm) a(h5ﬂ2) _ on
ot 0T ap ~ Thg, TOE)
1o Ou _ poOu, ]
+|:8 8Z(x76n7t) c az(l‘v szt)
on 2| 9n|” _
+ du(z, on,t) 5t ( 1+ (ed) £ 1].

20



DEPTH-AVERAGED MOMENTUM EQUATION

To treat the right-hand side, we use the hydrostatic pressure

on
1oy 0 (0u) 0 (Bw\), w0 (0u
/_Zb{ 58x+€u0 (28m (6‘x>+8z (8m>)+ € 0z (Qz)}d'z
On

— —hsgt +0() + |

Ho Ou

e 0z e 0z

(.’L’,(;T],t) - @%(‘T, 7zb7t):| .

In summary, we have

O(hsu) @ o 87’77’2_
oz +8t“1+(56) E =0,

O(hsu) a(h552) _ %
ot 0Ty~ Thig, TOE)
Ho Ou _Hou. ]
+|:8 82(1775777t) c 82(1‘7 szt)

+ du(z, 5n,t)%( 1+ (e0)? ?

2
79
T

20



Navier-Stokes

(u-V)u=div(or)+g in Q,

div(u) =0 in Q,

u=1ug in Qq.

H
e=——0

Saint-Venant (Long wave theory)

onu o \—/
5z Ta =0

ohu  Ohu? on
ohu n21 _ .
ot *or TIhg =




Navier-Stokes

(u-V)u=div(or)+g in Q,

div(u) =0 in Q,

u=1ug in Qq.

H
e=——0

Saint-Venant (Long wave theory)

onu o \—/
5z Ta =0

ohu  Ohu? on
ohu n21 _ .
ot *or TIhg =

6= % — 0
Wave Equation (Small amplitude theory)

.

21



HELMHOLTZ FORMULATION

In a two-dimensional setting, n(x, ) = Re{tiot(x)e !} is a solution of the Wave
Equation, where the amplitude ;,; satisfies

(5) W ror + div (926 Vibior) = 0.



HELMHOLTZ FORMULATION

In a two-dimensional setting, n(x, ) = Re{tiot(x)e !} is a solution of the Wave
Equation, where the amplitude ;,; satisfies

(5) W ror + div (926 Vibior) = 0.

The bathymetry can be decomposed as z(z) := 20 + dzs(x), with zo con-
stant and ¢z, has compact support in Q.




HELMHOLTZ FORMULATION

In a two-dimensional setting, n(x, ) = Re{tiot(x)e !} is a solution of the Wave
Equation, where the amplitude ;,; satisfies

(5) W ror + div (926 Vibior) = 0.

The bathymetry can be decomposed as z(z) := 20 + dzs(x), with zo con-
stant and ¢z, has compact support in Q.

We then reformulate (5) as

Total wave

{ div (1 + q)Vibtor) + kithsor =0 in €,
V (Ytot — ¥o) - 7 — iko (Yot — o) =0  on 99,

w

. Szp(z) - ; ._ ~ ;
where g(x) = o= is compactlyﬂsupported in Q, ko := Tozoo N is the unit
normal to 9Q and o(x) = e*0*? (s.t. |d| = 1).




HELMHOLTZ FORMULATION

In a two-dimensional setting, n(x, ) = Re{tiot(x)e !} is a solution of the Wave
Equation, where the amplitude ;,; satisfies

(5) W ror + div (926 Vibior) = 0.

The bathymetry can be decomposed as z(z) := 20 + dzs(x), with zo con-
stant and ¢z, has compact support in Q.

We then reformulate (5) as

Scattered wave (Vior = %o + Psc)

div ((1 4 q)Vpse) + kdtpse = —div (¢Vipo)  in €,
vwsc - — ik()wsc =0 on 89

where g(z) = 522”753") is compactlyﬂsupported in Q, ko := \/%, 7 is the unit
normal to A9 and o (x) = e*0* ¢ (s.t. |d| = 1).




HELMHOLTZ FORMULATION

In a two-dimensional setting, n(x, ) = Re{tiot(x)e !} is a solution of the Wave
Equation, where the amplitude ;,; satisfies

(5) Wthot + div (gZz;V?/)tot) =0.

The bathymetry can be decomposed as zy(z) := 2o + dzp(x), with zo con-
stant and &z, has compact support in 2.

We then consider the following problem

Helmholtz formulation

{ —div (1 + q) V) — kg = div (Vo) in €,
(1+q)Vp- A —ikotp =g —qVipo-7  on 09,

(6)

where Q C R? is a bounded open set with Lipschitz boundary, ¢ € L°°(9)
satisfying

@) Ba>0) 1+gq(z)>a ae xe.




WEAK FORMULATION

A weak formulation for (6) is given by
(8) a(giv,9) =blg;¢) Vo€ H'(Q),

where
a(@; 9, ¢) ::/ (1 + @)V - Vo — k3vd) dm—iko/ ¥ do,
Q o0

b(g; ¢) := 7/ qVpo - Vadﬂc + <g,$>H71/27H1/2.
Q



WEAK FORMULATION

A weak formulation for (6) is given by
(8) a(giv,9) =blg;¢) Vo€ H'(Q),

where
a(@; 9, ¢) ::/ (1 + @)V - Vo — k3vd) dm—iko/ ¥ do,
Q o0

b(g; ¢) := 7/ qVpo - Vadﬂc + <g,$>H71/27H1/2.
Q

The sesquilinear form a:
» is continuous under the norm

16113 1 = Ko 1911720y + @ IVHIl72(q) -

» Satisfies a Garding inequality

Re{a(q; ¥, %)} + 2k5 1911320y > |19

2
1,ko *




CONTINUOUS OPTIMIZATION PROBLEM

We are interested in solving the next PDE-constrained optimization problem

min - J(q,)
(9) (g, ¥)EUAXHT ()
s.t. (8).

where Uy ={q € BV(Q) |a—1<g(z) < Aae z€Q}is a closed, weakly*
closed and convex subset of BV ().



CONTINUOUS OPTIMIZATION PROBLEM

We are interested in solving the next PDE-constrained optimization problem

min - J(q,)
(9) (g, ¥)EUAXHT ()
s.t. (8).

where Uy ={q € BV(Q) |a—1<g(z) < Aae z€Q}is a closed, weakly*
closed and convex subset of BV ().

Space of functions of Bounded Variations

» Banach space for the norm ||q|| gy (o) = llall 11 () + [D4l(2), where D
is the distributional gradient and |Dg|(f2) is the variation of g.

» The weak™ convergence means
¢n — ¢ in L'(Q) and Dg,, — Dq in My (2, R"Y).

» The application ¢ € BV (Q) — |Dg|(2) € R is lower semi-continuous
with respect to the weak™ topology of BV




CONTINUITY OF THE CONTROL-TO-STATE MAPPING

THEOREM

Assume that g € Ux. Then there exists a constant Cs(ko, ) > 0 such that

||¢||1,k0 S CS(kO7Q) sup ‘a(q7¢7¢)|

H¢H1,k0:1

In addition, the solution to (8) satisfies the bound
11l 4y < Cs(ko, Q)C(Q) max{ky ' a”/?}
X (HqHLDQ(Q) VYol p2(q) + Hg||H*1/2(8Q)) )

with C(€2) > 0.
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CONTINUITY OF THE CONTROL-TO-STATE MAPPING

THEOREM

Assume that g € Ux. Then there exists a constant Cs(ko, ) > 0 such that

¥l gy < Cs(ko, Q) sup  la(g; ¢, @)l

1l k=1

In addition, the solution to (8) satisfies the bound
11l 4y < Cs(ko, Q)C(Q) max{ky ' a”/?}
X (HqHLDQ(Q) VYol p2(q) + Hg||H*1/2(8Q)) )

with C(€2) > 0.

As a result of this theorem and the continuity of the trace, we have
Hwtotul,ko < C(Q)Cs(ko, Q)ko max{kgl,a71/2}7
l[9selly ky < koCs(ko, D)™ llall oo ) V-




CONTINUITY OF THE CONTROL-TO-STATE MAPPING

THEOREM

Let (¢n)n C U be a sequence satisfying ||gn|| 5y (q) < M and whose weak™
limit in BV () is denoted by ¢oc. Let (¢)(¢n))n be the sequence of weak
solution to Problem (8). Then %(g,) converges strongly in H'(Q) towards
1(goo). In other words, the mapping

q € (Ua, weak™) — 1(q) € (H'(Q), strong),

is continuous.

26



THEOREM » EXISTENCE OF OPTIMAL SOLUTION [C(,)("QI,TET. RIFFO AND

SALOMON]

Assume that the cost function (¢,v) € Upx — J(q,%) € R satisfies:
(A1) There exists 8 > 0 such that

(A2) Y(q,v) € Ux x HY(Q), Jo(q,¥) > m > —co.

(A3) (q,%) — Jo(g, 1) is lower-semi-continuous with respect to the
(weak* ,weak) topology of BV (Q2) x H'(Q).

Then the optimization problem (9) has at least one optimal solution in U X
H' (Q).

27



BOUNDEDNESS/CONTINUITY OF SOLUTION TO HELMHOLTZ PROBLEM

THEOREM

Assume that ¢ € L°(Q) and satisfies (7) and g € L*(9Q). Then the
solution to Problem (8) satisfies

11l oy < CEOCis (o, @) (llall oo ey V80l Lo () + 1911 2200
where C(2) > 0 and

Culko, ) =1+ (1 +kg)ko " +a™"/?) max{ky ', a™/*}Cu(ko, Q).
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BOUNDEDNESS/CONTINUITY OF SOLUTION TO HELMHOLTZ PROBLEM

THEOREM

Assume that ¢ € L°(Q) and satisfies (7) and g € L*(9Q). Then the
solution to Problem (8) satisfies

11l oy < CEOCis (o, @) (llall oo ey V80l Lo () + 1911 2200
where C(2) > 0 and

Culko, ) =1+ (1 +kg)ko " +a™"/?) max{ky ', a™/*}Cu(ko, Q).

Consequently,
[eotlleo ey < koC(R)Ca(ko, @),
[sellcoay < koC(Q) [((1+ k§)kg* +a™2) @™/2Cy ko, 2) + 1] gl oo g -

28



OPTIMAL BATHYMETRY FOR A WAVE DAMPING PROBLEM

Minimization of the cost functional

UJ2
J(q,%tot) = 70/|1/Jtot($,y)|2dxdy,

The bathymetry is only optimized on a subset 2, = [£, 3L])% C Q.




OPTIMAL BATHYMETRY FOR A WAVE DAMPING PROBLEM

Optimal topography

a(z,y)

(a) View from above.

Minimization of the cost functional

w2
J(q,%tot) = 70/|1/Jtot($,y)|2d$dy,

The bathymetry is only optimized on a subset 2, = [£, 3L])% C Q.




OPTIMAL BATHYMETRY FOR A WAVE DAMPING PROBLEM

it p
it

(a) Real part of the incident wave. (b) Real part of the numerical solution.
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DETECTION OF A BATHYMETRY FROM A WAVEFIELD

Minimization of the cost functional

)

2
J(g, o) = 22 / ror (2, ) — res (2, ) Pdady,

V\glier%bgef is the amplitude associated with gres, § = £ and Q, = [
5 5]

87 8

L3




DETECTION OF A BATHYMETRY

Actual topography

et 29)

(a) Actual bathymetry.

FROM A WAVEFIELD

Reconstructed topography

q(z,y)

Minimization of the cost functional

2

[5;77;]2

where t),.. s is the amplitude associated with g,ef, § = £ and Q, = [£, 3L

Hata) = [ Hoal@,) = res (o) Py,

8

JPu




PERSPECTIVES

» A natural extension is to consider a polychromatic wave.

» Several questions have to be addressed in between, regarding first a possible
decomposition of the cost functional and then the convergence of the whole
procedure.

» This idea cannot be extended to nonlinear wave propagation models as
Saint-Venant or Boussinesq.
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GLAUERT’S MODELING (GLOBAL VARIABLES)

\ \(U

dr

(a) Radial decomposition

dr,

C

(b) Blade element model

o= U_ — U
Ufoo
r_ w
a E’
fanp = ——9%
A1+ a)




GLAUERT’S MODELING (LOCAL VARIABLES)

Blade element profile and associated angles, velocities and
forces.

dL = Cr(a )2 Ureicadr,

dD = CD( )QUTQZCAd'f’



GLAUERT’S MODELING (LOCAL VARIABLES)

dL = CL( )2 TelC)\d’l’,

dD = CD( )QUTechd'f’

Blade element profile and associated angles, velocities and
forces.

In what follows, we assume that C is well-defined and continuous on an
interval

IB = [_/3761
for some 3 € [0, ) and positive on Ig N RT. The coefficient Cp is well-
defined and positive on R.



GLAUERT’S MODELING

We denote by dT the infinitesimal thrust and d@ the infinitesimal torque that
apply on the blade element under consideration.

Macroscopic approach (Momentum Theory)

dT = 4a(1 — a)U? o prrdr,
dQ = 4d’ (1 — a)AU? o prr’dr.

Local expressions (Blade Element Theory)

1—a)2
dT = U)\% (CL(e —va)cosp + Cp(p — va) sin @)U%mpﬂ'rdr,

1—a)® :
dQ = 0')\% (CL(p — ) sing — Cp(p — ya) cos p)UZ o prrdr,
Becy

with o) = St




GLAUERT’S MODELING

Glauert's relations

tano = L~
YTXd+a)
a o

T—a 1sn’g (Cr(e —vr)cosp 4+ Cp(p — ya) sin ),

a O\
1—a 4X\sin?¢p

= —~—5—(Cule —)sinp — Cp(p — 7a) cos ).




SIMPLIFIED MODEL (Cp = 0)

Glauert’s relations become

l1-a

(10) tan@—m,

a COos
11 — =
(11) T—a m(w)smg(p,

a 1
12 =
(12) T ML(SD))\Singo’

with pur(p) := Z2CL(p — ) defined on I, = [=8 + 72, 8+ 71l
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SIMPLIFIED MODEL (Cp = 0)

Glauert’s relations become

l1—a
(10) tan(ﬂ = m,
a cos ¢
(11) 1 —a - lu’L((p)Sing S07
a’ 1
(12) 1—a_'uL(SD))\sin<p’
with pur(p) := Z2CL(p — ) defined on I, = [=8 + 72, 8+ 71l

THEOREM 3.2 » REFORMULATION OF THE SIMPLIFIED MODEL

Suppose that Assumption 3.1 holds and that (p,a,a’) € I —{0,5} x R —
{1} x R — {—1} satisfies Eqs (10-12). Then ¢ satisfies

(13) pr(e) = pa(e),

where 16 () := sin ptan(6x —¢). Reciprocally, suppose that ¢ € 1—{0, &
satisfies Eq. (13) and define a and a’ as the corresponding solutions of
Egs. (11) and (12), respectively. Then (p,a,a’) € I —{0,5} x R — {1} x
R — {—1} satisfies Eqgs. (10-12).




CORRECTED MODEL

(14)
(15)

(16)

tan ¢

where 15, (¢) =
respectively on I, and R.

_ _l-a

B )\(1—|—a’)’

= oy  oyeing) _ Lla=a))

= Sinzso(ﬂL(@) cos ¢ + pup(p) sinp) Gy
T )

B m(“L(W) sin ¢ — pp () cos p),

Ty CL(® = M), b () = 1537 COp (P — 1), defined



CORRECTED MODEL

(14) tanap:ﬁ,

o _ 1 ¢ (o)sine) — Lla=ac+)
(15) T2 = a2 g HL(P) cos + pp(p) sine) o
(16) d (5 (¢)sing — i (p) cos ),

1—a Asin?¢p

where p% () := 77225 CL(@ — 1), kD (P) == 17457Cp (¥ — 72, defined
respectively on I, and R.

THEOREM 3.3 » REFORMULATION OF THE CORRECTED MODEL

(...) Suppose also that (¢,a,a’) € I — {Z} x R — {1} x R satisfies
Equations (14-16). Then ¢ satisfies

(17) pL(p) — tan(0x — p)up (@) = pa(p),

where p& () = pa(p) 222(09/\)\8111 5 ¢ (((I(ED)T(;;L)CQ”‘ ()
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SOLVING ALGORITHMS

60 60
—+—Usual Proc. —+—Usual Proc.
50 —+«—Fixed point 50 —«Fixed point
Bisection Bisection
Z 40 - 2 40 \
g 5
= ge]
£ 30 /’N\\\ “ 30
3 : 3
5k 20 5 20 S,
10 10
05 1125 175 2375 3 0.5 1125 175 2375 3
A A
(a) ac =0.2 (b) ac =1

Number of iterations of usual (Usual Proc.), fixed-point (Fixed point) and bisection
(Bisection) algorithms required to solve Equation (17), according to the criterium

|1 (") = tan(Ox — ")ub (") — uG(")| < Tol = 1071

and for various values of \.



OPTIMIZATION

The design procedure mainly consists in optimizing the power coefficient

8 >\IYlaX 3 , CD 71
max Cp(yr,crn, @) = —— Aa(l—a)|l——==tan™ ¢]dA,

- Abhax Amin Cr
tano = L%
YT X0 ra)
a 1 . Y ((a —ac)+)
O gD(ui(e@) cos ¢ + pp () sin @) — BET
a’ 1

o = S () sine — () cos ).

I



OPTIMIZATION

The design procedure mainly consists in optimizing the power coefficient

8 Atnax C
max Cp(ya,cr, ) = / Nd'(1—a) (1 - C—Dtan71 np) dX,
N L

tang = ——%
A1+ a)’
a 1 ¢ .
st.q T = Sinztp(,uL(cp) cos ¢ + pup(p)sinp),
a 1

1—a m(l@(@) sin ¢ — pp () cos p).

Several simplifications are taken into account:

» Assume Fi(p) =1 and ¢ ((a — ac)+) = 0.



OPTIMIZATION

The design procedure mainly consists in optimizing the power coefficient

Atnax
max Cyp (3K ex, ) = 8 / Nd'(1—a) (1 — g—itanf1 np) dx,
A

N
tang = ——%
A1+ a)’
a 1 c .
s.t. = (1L () cos @ + pD () sin @),

1—a sin?yp

« -1 (1L () sinp — uhH (@) cos p)
= in .
1—a Asin?e Hely v~ Hply v

Several simplifications are taken into account:
» Assume Fi(p) =1 and ¢ ((a — ac)+) = 0.
» Define @ = ¢ — 7 that minimizes g—f.



OPTIMIZATION

The design procedure mainly consists in optimizing the power coefficient

>\xnax
max Cp (x5, cx, ) = QL/ Ma/ (1 — a)dA,
A

)\rnax min
fang = ——%
A1 +a')’
a 1
st} T = el eose,
a 1 .
= =5 nr(p)sing.

1—a Asin?¢

Several simplifications are taken into account:
» Assume Fi(p) =1 and ¢ ((a — ac)+) = 0.
» Define @ = ¢ — 7y that minimizes g—f.
» Then the coefficient Cp is simply neglected.



OPTIMIZATION

The design procedure mainly consists in optimizing the power coefficient

AXI]aX
wox G = g [ Nai- o
max )\

¢ 1-a
anp = ———,
YT N1+ a)
a 1
s.t. = —5—1(p) cos o,

l1—a sin®p

a 1 ()i

= ————u.(p)sine.
l1—a )\sin2ap/Ly v

Several simplifications are taken into account:
» Assume Fi(p) =1 and ¢ ((a — ac)+) = 0.
» Define @ = ¢ — 7y that minimizes g—f.
» Then the coefficient Cp is simply neglected.
» Theorem 3.2 allows us to replace pr(¢) := Z2CL(¢ —va) by pa(p).



OPTIMIZATION

The design procedure mainly consists in optimizing the power coefficient

Amax
max Cp(p) = 8 / Na' (1 — a)dA
©

N Sy,
fanp = — %
A1+ a)
s.t. l%“a = pc(yp) :1(1)182(2
a 1
1—-a HG(('D))\singp'

Several simplifications are taken into account:
> Assume Fx(¢) =1 and ¢ ((a — ac)+) = 0.

» Define @ = ¢ — 7 that minimizes %

» Then the coefficient Cp is simply neglected.

» Theorem 3.2 allows us to replace ur(¢) := Z>CrL(p —vx) by pa(p).

» The solution of the new problem is vy = ¢* — @, ¢} = %G((f))
L(a



NUMERICAL EXPERIMENTS

0.6 —Hip
—Hc
05+ He |
0.4
0.3
0.2
0.1
0
0 %" 0, =1.1
0.6 —Hip
]
0.5 He
0.4

0 % ¢ =11

(a) )\1 =0.5

0.12} — i) |
—HG
0.1+ MG ||

0.08

0.06 -

0.04+

0.02+

0
6, =0.52
"

0.12 —Hip
o —HG
0.1 Ha

0.08

0.06

0.04

0.02

0
0 5 pr 6=052
(b) A2 = 1.75

0.08
—Hip
—ha
0.06 He
0.04
—
0.02
0
70 o 0, =0.32
)
0.08 -
)
— G
0.06 ue |
0.04
0.02 |
0
% 0 @ 0y =032
@
(c) A3=3

Graphs of the functions u§ , : ¢ = p§ (¢) —tan(0x — p)uG (p), ug and pg for various

values of .

Above: (yx,cex) = (73, ¢3). below: (v, ex) = (75, c5)-
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NUMERICAL EXPERIMENTS

0.6

0.4 -

0.2

-0.2

0.5 1125 175 2375 3 0.5 1125 175 2375 3

0.5 1125 175 2375 3 0.5 1125 175 2375 3
A A

Graphs of the functions 7§ and 7%, ¢ and c§, Jx(75,c3) and Jx(75,cS) and the
corresponding .



PERSPECTIVES

» Concerning the convergence of solving algorithms, extending the proof to a
more general framework is desirable.

» An asymptotic analysis gives a general idea of the optimal solution behavior,
however the required assumptions seem very restrictive.

» The question of multiple optima in the corrected model remains open.



Thank you for your attention !
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