
Mathematical Methods for Marine Energy Extraction

Sebastián REYES-RIFFO

Université Paris-Dauphine, PSL Research University, CEREMADE

Paris, 29 Novembre, 2019



Outline

Time-parallelization of sequential DA problems
Luenberger observer
Time-parallelization setting
Parareal algorithm
Diamond strategy (Parareal case)

Bathymetry optimization
Derivation of the wave model
Description of the optimization problem
Continuous optimization problem
Numerical examples

Mathematical analysis of the BEM theory
Glauert’s modeling
Simplified and corrected models
Solving algorithms
Optimization



Luenberger observer

(1)


ẋ(t) = Ax(t) +Bu(t),
x(0) = x0 unknown,
y(t) = Cx(t).

(2)


˙̂x(t) = Ax̂(t) +Bu(t)

+ L [y(t)− ŷ(t)] ,
x̂(0) = x̂0,

ŷ(t) = Cx̂(t).

t

x0

x̂0

Is there a convenient way to choose the observer gain L ?
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ŷ(t) = Cx̂(t).
t

x0

x̂0

Is there a convenient way to choose the observer gain L ?

1



Luenberger observer

Note that

(2)⇐⇒
{ ˙̂x(t) = (A− LC)x̂(t) + (Bu(t) + Ly(t)),
x̂(0) = x̂0.

and then x(t)− x̂(t) = e(A−LC)t (x(0)− x̂(0))

Theorem I Identity observer Theorem [Luenberger]

Given a completely observable system (1), an identity observer of the form
(2) can be constructed, and the coefficients of the characteristic polynomial
of the observer can be selected arbitrarily.
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Luenberger observer

Note that

(2)⇐⇒
{ ˙̂x(t) = (A− LC)x̂(t) + (Bu(t) + Ly(t)),
x̂(0) = x̂0.

and then x(t)− x̂(t) = e(A−LC)t (x(0)− x̂(0))

Proposition 1.1

We assume System (1) is observable and the eigenvalues of A − LC are
negative and simple. Then, we have∥∥e(A−LC)t∥∥ ≤ γe−µt

with µ := min
ν∈σ(A−LC) |ν| and γ := cond(V ) =

∥∥V −1
∥∥ ‖V ‖, where V is the

matrix whose rows are the eigenvectors of A − LC and ‖·‖ represents the
induced 2-norm of a matrix.
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Diamond strategy

t

x0

x̂0

T

t`n

Luenberger observer Time-parallel method
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Diamond strategy

t

x0

x̂0

T

t`n

I Divide the time interval into windows W` of a given length T > 0.

I Solve Equation (2) on each window, in a sequential order, using a
time-parallel algorithm.

3



Diamond strategy

t

x0

x̂0

T

t`n

I Divide the time interval into windows W` of a given length T > 0.
I Solve Equation (2) on each window, in a sequential order, using a

time-parallel algorithm.
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Diamond strategy (time-parallelization)

t

x0

x̂0

T

∆T

t`n

I Decompose W` into N subintervals of length ∆T .

I Parallelizing in time requires the introduction of initial conditions X̂h
`,n.

I We then construct a parallel version x̂‖(t) of Equation (2) in each subinterval.
I Imposing initial conditions induces discontinuities (jumps) at t`n:

Jh`,n := X̂h
`,n − x̂‖(t`n

−).

Next step : define a suitable stopping criterion !
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Diamond strategy (stopping criterion)

t

x0

x̂0

T

t`n

Lemma

Under the assumptions of Proposition 1.1, we have∥∥∥(x− x̂‖)(t`n
−)
∥∥∥ ≤ γ(e−µt`n ‖x(0)− x̂(0)‖+ e−µ∆T ∥∥Jh`,n−1

∥∥).
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Diamond strategy (stopping criterion)

Proposition 1.2 I A posteriori estimate

Let us assume that h is obtained from the stopping criterion in W`

max
1≤n≤N

∥∥Jh`,n∥∥ ≤ γ̃e−µ`T

where γ̃ is an arbitrary parameter. Then, the rate of convergence of x̂‖(t)
to x(t) is bounded by µ, i.e.∥∥∥(x− x̂‖)(t`n

−)
∥∥∥ ≤ γe−µ∆T (‖x(0)− x̂(0)‖+ γ̃) e−µ`T .
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Parareal algorithm

0 2 4 6 8 10 12 14 16 18 20
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Dahlquist equation u̇(t) = − i
2u in [0, 20]

To solve the problem {
u̇(t) = f(u(t)), t ∈ [0, T ]
u(0) = u0

we decompose the time interval on N subintervals, denoted by (tn−1, tn).
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Parareal algorithm
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I Impose arbitrary values on the subintervals by using the coarse solver G:
U0

0 = u0, U
0
n = G(tn, tn−1, U

0
n−1).

I Using the fine solver F , solve in parallel{
u̇(t) = f(u(t)), t ∈ [tn−1, tn]

u(tn−1) = U0
n−1.

I Smooth the discontinuities previously introduced by defining
U1
n := F(tn, tn−1, U

0
n−1) + G(tn, tn−1, U

1
n−1)− G(tn, tn−1, U

0
n−1).
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Parareal algorithm
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At iteration k:
I compute {F(tn, tn−1, U

k−1
n−1)}Nn=1 in parallel.

I Update the sequence

Ukn := F(tn, tn−1, U
k−1
n−1) + G(tn, tn−1, U

k
n−1)− G(tn, tn−1, U

k−1
n−1)

by computing {G(tn, tn−1, U
k
n−1)}Nn=1 sequentially.

What about its convergence ?
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Theorem I Convergence of Parareal [Gander and Hairer]

(...) at iteration k of the Parareal algorithm, we have the bound

∥∥u(tn)− Ukn
∥∥ ≤ C3

C1

(C1∆T p+1)k+1

k! (1 + C2∆T )n−(k+1)
k∏
j=0

(n− j).

I Superlinear rate of convergence.
I Among other assumptions, F(tn, tn−1, U

k
n−1) is the exact solution on

(tn−1, tn), and G must satisfy

‖G(t+ ∆T, t, x)− G(t+ ∆T, t, y)‖ ≤ (1 + C2∆T ) ‖x− y‖ .

I The result is well suited for non-decaying problems.
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Theorem I Convergence of Parareal [Gander and Hairer]

(...) at iteration k of the Parareal algorithm, we have the bound

∥∥u(tn)− Ukn
∥∥ ≤ C3

C1

(C1∆T p+1)k+1

k! (1 + C2∆T )n−(k+1)
k∏
j=0

(n− j).

Theorem 1.3 I Convergence of Parareal for decaying problems [Kwok,
Riffo and Salomon]

(...) We also assume that F and G are Lipschitz with respect to the initial conditions:

max {‖F(tn, tn−1, y)−F(tn, tn−1, z)‖ , ‖G(tn, tn−1, y)− G(tn, tn−1, z)‖} ≤ ε ‖y − z‖ ,

for a constant ε ∈ (0, 1). Then, after k iterations of the Parareal algorithm, we have

∥∥Ukn − u(tn)
∥∥ ≤

0 n ≤ k

αβk
n−k−1∑
i=0

(
k+i
k

)
εi n > k.
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Diamond strategy (Parareal case)

t

x0

x̂0

T

t`n

I The Luenberger observer x̂(t) is a decaying problem (Proposition 1.1).

I The number of parareal iterations {k`}` can be determined from

(a) Proposition 1.2 (a posteriori estimate)

max
1≤n≤N

∥∥X̂k`
`,n − x̂‖(t

`
n)
∥∥ ≤ γ̃e−µ`T , γ̃ arbitrary.

(b) Theorem 1.3 (a priori bound)∥∥X̂k`
`,n − x̂‖(t

`
n)
∥∥ ≤ αβk` n−k`−1∑

i=0

(
k`+i
k`

)
εi, n > k`.
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Diamond strategy (Parareal case)

Theorem 1.4

We keep the assumptions of Proposition 1.1 and Theorem 1.3. For a window W` and
γ̃ > 0, we define

k` =
{

minS` S` 6= ∅
k`−1 S` = ∅

where

S` =

{
k ∈ N∗, k ≤ N − 1 : αβk

N−k−1∑
i=0

(
k+i
k

)
εi ≤ γ̃e−µ`T · 1− ε

α(1− εN )

}
.

Suppose that we apply the Diamond strategy using k` iterations of the Parareal algorithm.
Then, the stopping criterion is satisfied.

10



Complexity analysis (Parareal case)

We define the efficiency of the algorithm as

E = τs
Nτp

where τs, τp are the CPU times required to reach a given tolerance Tol by
using a sequential and parallel solver, respectively; and N represents the
number of available processors.

Theorem

The estimated efficiency of the Diamond Strategy is given by

Eth = `∗τF∆T
τF∆T +NτG∆T

(
`∗−1∑
`=0

k`

)−1

,

where τF∆T , τG∆T represents the amount of time spent in solving (2) over an
interval of size ∆T with F and G, respectively, and

`∗ := min
{
` ∈ N :

(
γ̃(1 + e−µ∆T ) + γe−µ∆T ‖x(0)− x̂(0)‖

)
e−µ`T ≤ Tol

}
.
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(a) γ̃ = 10−3
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(b) γ̃ = 1.
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(c) γ̃ = 103.

Figure: Comparison between kth and kobs, for N = 16 and δt = ∆T
25 . The eigenvalues of

A− LC are {−0.8,−1} (top) and {−0.2,−0.25} (bottom).
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(a) E(γ̃), for N = 16 and
δt = ∆T

25 .
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(b) E(N), for δt = ∆T
25 and

γ̃ = 210.
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(c) E(δt), for N = 16 and
γ̃ = 210.

Figure: Comparison between Eobs(kobs), Eobs(kth) and Eth0 . The eigenvalues of A− LC
are {−0.8,−1} (top) and {−0.2,−0.25} (bottom).
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Perspectives

I Use of other time-parallelization algorithms (e.g. ParaExp).
I Extension to a stochastic framework (continuous Kalman filter).
I Considering a variable window approach.
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Derivation of the wave model

x

z Free surface

η

−zb
h

Bathymetry

L

H

A

I Ωt = {(x, z) ∈ Ω× R | − zb(x) ≤ z ≤ η(x, t)}, t ≥ 0.

I Asymptotic derivation:

ε := H

L
, δ := A

H
.
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From NS system to SV equations

(3)


∂u
∂t

+ (u · ∇) u = div (σT ) + g in Ωt,

div (u) = 0 in Ωt,
u = u0 in Ω0.

I Incompressible fluid,
I u = (u,w)> denotes its velocity,
I σT = −pI + µ

(
∇u +∇u>

)
is the total stress tensor, p denotes the pressure,

I gravity g = (0,−g)>, atmospheric pressure p0, viscosity µ and density are
constants.
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From NS system to SV equations

(3)


∂u
∂t

+ (u · ∇) u = div (σT ) + g in Ωt,

div (u) = 0 in Ωt,
u = u0 in Ω0.

Change of variables

x′ = x

L
, z′ = z

H
, t′ = C0

L
t,

and
u′ = u

δC0
, w′ = w

δεC0
, η′ = η

A
, z′b = zb

H
,

where C0 =
√
gH. The dimensionless coefficients are given by

µ′ = µ

C0L
, p′ = p

gH
, p′a = pa

gH
.
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Depth-averaged Mass Equation

Due to the Leibnitz integral rule and the boundary conditions, integrating the mass
equation gives

∫ δη

−zb

(
∂u

∂x
+ ∂w

∂z

)
dz = 0

∂

∂x

(∫ δη

−zb

udz

)
− δu(x, δη, t)∂η

∂x
− u(x,−zb, t)

∂zb
∂x

+ w(x, δη, t)− w(x,−zb, t) = 0

∂(hδu)
∂x

+ ∂η

∂t

√
1 + (εδ)2

∣∣∣∂η
∂x

∣∣∣2 = 0

(4)

−δu
∂η

∂x
+ w = ∂η

∂t

√
1 + (εδ)2

∣∣∣∂η
∂x

∣∣∣2 on (x, δη(x, t), t),

u
∂zb
∂x

+ w = 0 on (x,−zb(x), t).
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∫ δη

−zb

(
∂u
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+ ∂w

∂z

)
dz = 0

∂

∂x

(∫ δη

−zb

udz

)
− δu(x, δη, t)∂η

∂x
− u(x,−zb, t)

∂zb
∂x

+ w(x, δη, t)− w(x,−zb, t) = 0

∂(hδu)
∂x

+ ∂η

∂t

√
1 + (εδ)2

∣∣∣∂η
∂x

∣∣∣2 = 0

We denote the depth-averaged velocity by

u(x, t) = 1
hδ(x, t)

∫ δη

−zb

u(x, z, t)dz,

where hδ = δη + zb.
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Hydrostatic pressure

We assume a small viscosity coefficient µ = εµ0.

The Momentum Equation (in w) yields

ε2δ
(
∂w

∂t
+ δ
(
u
∂w

∂x
+ w

∂w

∂z

))
= −∂p

∂z
− 1 + δ

∂

∂x

(
µ
(
∂u

∂z
+ ε2 ∂w

∂x

))
(4)

+ 2δ ∂
∂z

(
µ
∂w

∂z

)
.

After rearranging terms of order ε2 and integrating in z, we get

p(x, z, t) = O(ε2δ) + (δη − z) + εδµ0

(
∂u

∂x
+ 2∂w

∂z
− ∂u

∂x
(x, δη, t)

)
+ p(x, δη, t)− 2εδµ0

∂w

∂z
(x, δη, t) ∂w

∂z︸︷︷︸
pa+O((εδ)2)

(stress boundary conditions)

= (δη − z) + pa +O(εδ).
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Depth-averaged Momentum Equation

The Momentum Equation (in u) yields
∂u

∂t
+ δ
(
u
∂u

∂x
+ w

∂u

∂z

)
= −1

δ

∂p

∂x
+ 2 ∂

∂x

(
εµ0

∂u

∂x

)
+ ∂

∂z

(
εµ0

( 1
ε2
∂u

∂z
+ ∂w

∂x

))
.

Since div (u) = 0, integrating its left-hand side gives∫ δη

−zb

[
∂u

∂t
+ δ
(
u
∂u

∂x
+ w

∂u

∂z

)]
dz =

∫ δη

−zb

∂u

∂t
dz + δ

∫ δη

−zb

(
∂u2

∂x
+ ∂uw

∂z

)
dz

= ∂(hδu)
∂t

+ δ
∂(hδu2)
∂x

+ δu(x, δη, t)∂η
∂t

(√
1 + (εδ)2

∣∣∣∂η
∂x

∣∣∣2 − 1
)
.

Proposition

The hydrostatic pressure, combined with the stress boundary conditions,
implies that u(x, z, t) = u(x, t) +O(ε). In particular, we have the approxi-
mation

hδu2 = hδu
2 +O(ε2).
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Depth-averaged Momentum Equation

To treat the right-hand side, we use the hydrostatic pressure∫ δη

−zb

[
− 1
δ

∂p

∂x
+ εµ0

(
2 ∂

∂x

(
∂u

∂x

)
+ ∂

∂z

(
∂w

∂x

))
+ µ0

ε

∂

∂z

(
∂u

∂z

)]
dz

= −hδ
∂η

∂x
+O(ε) +

[
µ0

ε

∂u

∂z
(x, δη, t)− µ0

ε

∂u

∂z
(x,−zb, t)

]
.

In summary, we have

∂(hδu)
∂x

+ ∂η

∂t

√
1 + (εδ)2

∣∣∣∂η
∂x

∣∣∣2 = 0,

∂(hδu)
∂t

+ δ
∂(hδu2)
∂x

= −hδ
∂η

∂x
+O(ε)

+
[
µ0

ε

∂u

∂z
(x, δη, t)− µ0

ε

∂u

∂z
(x,−zb, t)

]
+ δu(x, δη, t)∂η

∂t

(√
1 + (εδ)2

∣∣∣∂η
∂x

∣∣∣2 − 1
)
.
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Navier-Stokes
∂u
∂t

+ (u · ∇) u = div (σT ) + g in Ωt,

div (u) = 0 in Ωt,
u = u0 in Ω0.

Saint-Venant
∂hu

∂x
+ ∂η

∂t
= 0,

∂hu

∂t
+ ∂hu2

∂x
+ gh

∂η

∂x
= 0.

Wave Equation

∂2η

∂t2
− ∂

∂x

(
gzb

∂η

∂x

)
= 0.

ε = H

L
−→ 0

(Long wave theory)

δ = A

H
−→ 0

(Small amplitude theory)
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Helmholtz formulation

In a two-dimensional setting, η(x, t) = Re{ψtot(x)e−iωt} is a solution of the Wave
Equation, where the amplitude ψtot satisfies

(5) ω2ψtot + div (gzb∇ψtot) = 0.

The bathymetry can be decomposed as zb(x) := z0 + δzb(x), with z0 con-
stant and δzb has compact support in Ω.

We then reformulate (5) as

{
div ((1 + q)∇ψtot) + k2

0ψtot = 0 in Ω,
∇(ψtot − ψ0) · n̂− ik0(ψtot − ψ0) = 0 on ∂Ω,

where q(x) := δzb(x)
z0

is compactly supported in Ω, k0 := ω√
gz0

, n̂ is the unit

normal to ∂Ω and ψ0(x) = eik0x·~d (s.t. |~d| = 1).
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Helmholtz formulation
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Helmholtz formulation

(6)
{
−div ((1 + q)∇ψ)− k2

0ψ = div (q∇ψ0) in Ω,
(1 + q)∇ψ · n̂− ik0ψ = g − q∇ψ0 · n̂ on ∂Ω,

where Ω ⊂ R2 is a bounded open set with Lipschitz boundary, q ∈ L∞(Ω)
satisfying

(7) (∃α > 0) 1 + q(x) ≥ α a.e. x ∈ Ω.

22



Weak formulation

A weak formulation for (6) is given by

(8) a(q;ψ, φ) = b(q;φ) ∀φ ∈ H1(Ω),

where

a(q;ψ, φ) :=
∫

Ω

(
(1 + q)∇ψ · ∇φ− k2

0ψφ
)
dx− ik0

∫
∂Ω
ψφdσ,

b(q;φ) := −
∫

Ω
q∇ψ0 · ∇φdx+ 〈g, φ〉H−1/2,H1/2 .

The sesquilinear form a:
I is continuous under the norm

‖ψ‖21,k0
:= k2

0 ‖ψ‖2L2(Ω) + α ‖∇ψ‖2L2(Ω) .

I Satisfies a Gårding inequality

Re{a(q;ψ,ψ)}+ 2k2
0 ‖ψ‖2L2(Ω) ≥ ‖ψ‖

2
1,k0

.
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Continuous optimization problem

We are interested in solving the next PDE-constrained optimization problem

(9)
min

(q,ψ)∈UΛ×H1(Ω)
J(q, ψ)

s.t. (8).

where UΛ = {q ∈ BV (Ω) | α− 1 ≤ q(x) ≤ Λ a.e. x ∈ Ω} is a closed, weakly∗
closed and convex subset of BV (Ω).

Space of functions of Bounded Variations

I Banach space for the norm ‖q‖BV (Ω) := ‖q‖L1(Ω) + |Dq|(Ω), where D
is the distributional gradient and |Dq|(Ω) is the variation of q.

I The weak∗ convergence means

qn → q in L1(Ω) and Dqn ⇀ Dq in Mb(Ω,RN ).

I The application q ∈ BV (Ω) 7→ |Dq|(Ω) ∈ R+ is lower semi-continuous
with respect to the weak∗ topology of BV .
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Continuity of the control-to-state mapping

Theorem

Assume that q ∈ UΛ. Then there exists a constant Cs(k0,Ω) > 0 such that

‖ψ‖1,k0
≤ Cs(k0,Ω) sup

‖φ‖1,k0=1
|a(q;ψ, φ)|.

In addition, the solution to (8) satisfies the bound

‖ψ‖1,k0
≤ Cs(k0,Ω)C(Ω) max{k−1

0 , α−1/2}

×
(
‖q‖L∞(Ω) ‖∇ψ0‖L2(Ω) + ‖g‖H−1/2(∂Ω)

)
,

with C(Ω) > 0.

As a result of this theorem and the continuity of the trace, we have

‖ψtot‖1,k0
≤ C(Ω)Cs(k0,Ω)k0 max{k−1

0 , α−1/2},

‖ψsc‖1,k0
≤ k0Cs(k0,Ω)α−1/2 ‖q‖L∞(Ω)

√
|Ω|.
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Continuity of the control-to-state mapping

Theorem

Let (qn)n ⊂ U be a sequence satisfying ‖qn‖BV (Ω) ≤ M and whose weak∗

limit in BV (Ω) is denoted by q∞. Let (ψ(qn))n be the sequence of weak
solution to Problem (8). Then ψ(qn) converges strongly in H1(Ω) towards
ψ(q∞). In other words, the mapping

q ∈ (UΛ,weak∗) 7→ ψ(q) ∈ (H1(Ω), strong),

is continuous.
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Theorem I Existence of optimal solution [Cocquet, Riffo and
Salomon]

Assume that the cost function (q, ψ) ∈ UΛ 7→ J(q, ψ) ∈ R satisfies:
(A1) There exists β > 0 such that

J(q, ψ) = J0(q, ψ) + β|Dq|(Ω).

(A2) ∀(q, ψ) ∈ UΛ ×H1(Ω), J0(q, ψ) ≥ m > −∞.
(A3) (q, ψ) 7→ J0(q, ψ) is lower-semi-continuous with respect to the

(weak∗,weak) topology of BV (Ω)×H1(Ω).
Then the optimization problem (9) has at least one optimal solution in UΛ×
H1(Ω).

27



Boundedness/Continuity of solution to Helmholtz problem

Theorem

Assume that q ∈ L∞(Ω) and satisfies (7) and g ∈ L2(∂Ω). Then the
solution to Problem (8) satisfies

‖ψ‖C0(Ω) ≤ C̃(Ω)C̃s(k0, α)
(
‖q‖L∞(Ω) ‖∇ψ0‖L∞(Ω) + ‖g‖L2(∂Ω)

)
,

where C̃(Ω) > 0 and

C̃s(k0, α) = 1 +
(
(1 + k2

0)k−1
0 + α−1/2)max{k−1

0 , α−1/2}Cs(k0,Ω).

Consequently,

‖ψtot‖C0(Ω) ≤ k0C̃(Ω)C̃s(k0, α),

‖ψsc‖C0(Ω) ≤ k0C̃(Ω)
[(

(1 + k2
0)k−1

0 + α−1/2)α−1/2Cs(k0,Ω) + 1
]
‖q‖L∞(Ω) .
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Optimal bathymetry for a wave damping problem

(a) View from above. (b) Norm of the numerical solution.

Minimization of the cost functional

J(q, ψtot) = ω2
0

2

∫
Ω0 = [L6 ,

5L
6 ]2

|ψtot(x, y)|2dxdy,

The bathymetry is only optimized on a subset Ωq = [L4 ,
3L
4 ]2 ⊂ Ω0.
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Optimal bathymetry for a wave damping problem

(a) Real part of the incident wave. (b) Real part of the numerical solution.
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Detection of a bathymetry from a wavefield

(a) Actual bathymetry. (b) Reconstructed bathymetry.

Minimization of the cost functional

J(q, ψtot) = ω2
0

2

∫
Ω0 = [ 3L

4 − δ,
3L
4 + δ]2

|ψtot(x, y)− ψref (x, y)|2dxdy,

where ψref is the amplitude associated with qref , δ = L
6 and Ωq = [L8 ,

3L
8 ]2∪

[ 5L
8 ,

7L
8 ]2.
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Perspectives

I A natural extension is to consider a polychromatic wave.
I Several questions have to be addressed in between, regarding first a possible

decomposition of the cost functional and then the convergence of the whole
procedure.

I This idea cannot be extended to nonlinear wave propagation models as
Saint-Venant or Boussinesq.
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Glauert’s modeling (Global variables)

r

dr

�

�

(a) Radial decomposition

(b) Blade element model

a = U−∞ − U0

U−∞
,

a′ = ω

2Ω ,

tanϕ = 1− a
λ(1 + a′) .

33



Glauert’s modeling (Local variables)

ϕ

γλ

α

U0 Ωr

dL dD

Urel = U0
sinϕ

Chord
line

Blade element profile and associated angles, velocities and
forces.

dL = CL(α)ρ2U
2
relcλdr,

dD = CD(α)ρ2U
2
relcλdr.

Assumption 3.1

In what follows, we assume that CL is well-defined and continuous on an
interval

Iβ := [−β, β]

for some β ∈ [0, αs) and positive on Iβ ∩ R+. The coefficient CD is well-
defined and positive on R.
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Glauert’s modeling

We denote by dT the infinitesimal thrust and dQ the infinitesimal torque that
apply on the blade element under consideration.

Macroscopic approach (Momentum Theory)

dT = 4a(1− a)U2
−∞ρπrdr,

dQ = 4a′(1− a)λU2
−∞ρπr

2dr.

Local expressions (Blade Element Theory)

dT = σλ
(1− a)2

sin2 ϕ
(CL(ϕ− γλ) cosϕ+ CD(ϕ− γλ) sinϕ)U2

−∞ρπrdr,

dQ = σλ
(1− a)2

sin2 ϕ
(CL(ϕ− γλ) sinϕ− CD(ϕ− γλ) cosϕ)U2

−∞ρπr
2dr,

with σλ = Bcλ
2πr .
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Glauert’s modeling

Glauert’s relations

tanϕ = 1− a
λ(1 + a′) ,

a

1− a = σλ
4 sin2 ϕ

(CL(ϕ− γλ) cosϕ+ CD(ϕ− γλ) sinϕ),

a′

1− a = σλ
4λ sin2 ϕ

(CL(ϕ− γλ) sinϕ− CD(ϕ− γλ) cosϕ).
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Simplified model (CD = 0)

Glauert’s relations become

tanϕ = 1− a
λ(1 + a′) ,(10)

a

1− a = µL(ϕ) cosϕ
sin2 ϕ

,(11)

a′

1− a = µL(ϕ) 1
λ sinϕ,(12)

with µL(ϕ) := σλ
4 CL(ϕ− γλ) defined on Iβ,γλ := [−β + γλ, β + γλ].

Theorem 3.2 I Reformulation of the simplified model

Suppose that Assumption 3.1 holds and that (ϕ, a, a′) ∈ I − {0, π2 } × R −
{1} × R− {−1} satisfies Eqs (10–12). Then ϕ satisfies

(13) µL(ϕ) = µG(ϕ),

where µG(ϕ) := sinϕ tan(θλ−ϕ). Reciprocally, suppose that ϕ ∈ I−{0, π2 }
satisfies Eq. (13) and define a and a′ as the corresponding solutions of
Eqs. (11) and (12), respectively. Then (ϕ, a, a′) ∈ I − {0, π2 } × R− {1} ×
R− {−1} satisfies Eqs. (10–12).
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Corrected model

tanϕ = 1− a
λ(1 + a′) ,(14)

a

1− a = 1
sin2 ϕ

(µcL(ϕ) cosϕ+ µcD(ϕ) sinϕ)− ψ ((a− ac)+)
(1− a)2 ,(15)

a′

1− a = 1
λ sin2 ϕ

(µcL(ϕ) sinϕ− µcD(ϕ) cosϕ),(16)

where µcL(ϕ) := σλ
4Fλ(ϕ)CL(ϕ− γλ), µcD(ϕ) := σλ

4Fλ(ϕ)CD(ϕ− γλ), defined
respectively on Iβ,γλ and R.

Theorem 3.3 I Reformulation of the corrected model

(...) Suppose also that (ϕ, a, a′) ∈ I+ − {π2 } × R − {1} × R satisfies
Equations (14–16). Then ϕ satisfies

(17) µcL(ϕ)− tan(θλ − ϕ)µcD(ϕ) = µcG(ϕ),

where µcG(ϕ) := µG(ϕ) + cos θλsin2 ϕ

cos(θλ − ϕ)
ψ ((τ(ϕ)− ac)+)

(1− τ(ϕ))2 . (...)
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Solving algorithms

(a) ac = 0.2 (b) ac = 1

Number of iterations of usual (Usual Proc.), fixed-point (Fixed point) and bisection
(Bisection) algorithms required to solve Equation (17), according to the criterium∣∣µcL(ϕk)− tan(θλ − ϕk)µcD(ϕk)− µcG(ϕk)

∣∣ ≤ Tol = 10−10

and for various values of λ.
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Optimization

The design procedure mainly consists in optimizing the power coefficient

max Cp(γλ, cλ, ϕ) = 8
λ2

max

∫ λmax

λmin

λ3a′(1− a)
(

1− CD
CL

tan−1 ϕ
)
dλ,

s.t.



tanϕ = 1− a
λ(1 + a′) ,

a

1− a = 1
sin2 ϕ

(µcL(ϕ) cosϕ+ µcD(ϕ) sinϕ)− ψ ((a− ac)+)
(1− a)2 ,

a′

1− a = 1
λ sin2 ϕ

(µcL(ϕ) sinϕ− µcD(ϕ) cosϕ).

Several simplifications are taken into account:

I Assume Fλ(ϕ) = 1 and ψ ((a− ac)+) = 0.
I Define α = ϕ− γλ that minimizes CD

CL
.

I Then the coefficient CD is simply neglected.
I Theorem 3.2 allows us to replace µL(ϕ) := σλ

4 CL(ϕ− γλ) by µG(ϕ).

I The solution of the new problem is γ∗λ = ϕ∗ − α, c∗λ = 8πrµG(ϕ∗)
BCL(α) .
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a′

1− a = 1
λ sin2 ϕ

µL(ϕ) sinϕ.

Several simplifications are taken into account:
I Assume Fλ(ϕ) = 1 and ψ ((a− ac)+) = 0.
I Define α = ϕ− γλ that minimizes CD

CL
.

I Then the coefficient CD is simply neglected.
I Theorem 3.2 allows us to replace µL(ϕ) := σλ

4 CL(ϕ− γλ) by µG(ϕ).

I The solution of the new problem is γ∗λ = ϕ∗ − α, c∗λ = 8πrµG(ϕ∗)
BCL(α) .
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Numerical experiments

(a) λ1 = 0.5 (b) λ2 = 1.75 (c) λ3 = 3

Graphs of the functions µcLD : ϕ 7→ µcL(ϕ)− tan(θλ − ϕ)µcD(ϕ), µcG and µG for various
values of λ.
Above: (γλ, cλ) = (γ∗λ, c

∗
λ), below: (γλ, cλ) = (γcλ, c

c
λ).
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Numerical experiments

Graphs of the functions γ∗λ and γcλ, c
∗
λ and ccλ, Jλ(γ∗λ, c

∗
λ) and Jλ(γcλ, c

c
λ) and the

corresponding ϕc.
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Perspectives

I Concerning the convergence of solving algorithms, extending the proof to a
more general framework is desirable.

I An asymptotic analysis gives a general idea of the optimal solution behavior,
however the required assumptions seem very restrictive.

I The question of multiple optima in the corrected model remains open.
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Thank you for your attention !
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